Правило решение уравнений десятичных дробей

Применение дробей

Этот урок будет интересным и познавательным. Мы научимся применять дроби для различных жизненных случаев.

Нахождение дроби от числа

Мы уже говорили, что дробь это часть от чего-либо. Эта часть может быть чем угодно. Например, от пиццы это половина пиццы:

Это был пример с пиццей. Но применение дробей не заканчивается на одной пицце. Например, давайте узнаем сколько составляет от десяти сантиметров:

Как вы уже догадались от десяти сантиметров составляет пять сантиметров. Ведь что такое ? Это простейшая дробь, которая означает половину от чего-то. У нас было 10 сантиметров. Мы разделили эти десять сантиметров пополам и получили пять сантиметров.

Попробуем узнать, сколько составляет от одного часа. Вспоминаем, что такое час. Час это 60 минут. Нам нужно найти (половину) от 60 минут. Нетрудно догадаться, что половина от 60 минут это 30 минут. Значит от одного часа составляет 30 минут или полчаса.

Попробуем найти от одного центнера. Центнер это 100 килограмм. Требуется найти (половину) от 100 килограмм. Нетрудно догадаться, что половина от 100 килограмм это 50 килограмм. Значит от одного центнера составляет 50 килограмм.

Поскольку мы занимаемся математикой, значит в большинстве случаев будем иметь дело с числами.

Найдём от числа 12. Нам нужно найти половину от числа 12. Нетрудно догадаться, что половиной от числа 12 является число 6. Значит числа 12 составляет число 6.

Чтобы легче было находить дробь от числа, можно пользоваться следующим образом:

Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Попробуем проследить весь процесс работы этого правила. Для примера возьмём десять сантиметров:

Пусть требуется найти от этих десяти сантиметров. Читаем первую часть правила:

Чтобы найти дробь от числа нужно это число разделить на знаменатель дроби

Итак, делим десять сантиметров на знаменатель дроби . Знаменатель этой дроби равен числу 2. Поэтому делим десять сантиметров на 2

Читаем вторую часть правила:

и полученный результат умножить на числитель дроби

Итак, умножаем пять сантиметров на числитель дроби . Числитель дроби это единица. Поэтому умножаем пять сантиметров на единицу:

Мы нашли от десяти сантиметров. от десяти сантиметров составляют пять сантиметров:

Почему же после деления числа на знаменатель дроби приходиться умножать полученный результат на числитель дроби? Дело в том, что знаменатель дроби показывает на сколько частей чего-либо разделено, а числитель показывает сколько частей было взято.

В нашем примере десять сантиметров были разделены на две части (пополам), и из этих частей была взята одна часть. Умножая одну часть на числитель дроби, мы тем самым указываем сколько частей мы берём от чего-то. То есть, умножив пять сантиметров на числитель дроби , мы тем самым указали, что берем одну часть из двух.

Пример 2. Найти от 10 сантиметров.

Применим правило нахождения дроби от числа:

Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Сначала делим 10 сантиметров на знаменатель дроби

Получили два сантиметра. Этот результат нужно умножить на числитель дроби

Мы нашли от десяти сантиметров. от десяти сантиметров составляют четыре сантиметра.

Весь процесс решения можно увидеть на следующем рисунке:

Сначала 10 сантиметров были разделены на пять равных частей. Затем было взято две части:

Пример 3. Найти от числа 56.

Чтобы найти от числа 56, нужно это число разделить на знаменатель дроби , и полученный результат умножить на числитель дроби .

Итак, сначала делим число 56 на знаменатель дроби

Теперь умножаем полученное результат на числитель дроби

Получили ответ 21. Значит от числа 56 составляет 21.

Пример 4. Найти от одного часа.

Один час это 60 минут. Задание можно понимать, как нахождение от 60 минут.

Сначала разделим 60 минут на знаменатель дроби

60 мин : 4 = 15 мин

Теперь умножим полученные 15 минут на числитель дроби

15 мин × 2 = 30 мин

Получили в ответе 30 минут. Значит от одного часа составляют тридцать минут или полчаса.

Пример 5. Найти от одного метра.

Один метр это сто сантиметров. Сначала разделим 100 см на знаменатель дроби

100 см : 5 = 20 см

Теперь умножим полученные 20 см на числитель дроби

20 см × 4 = 80 см

Получили ответ 80 см. Значит от одного метра составляют 80 см.

Нахождение целого числа по дроби

Зная часть числа и сколько это составляет от целого числа, можно найти изначальное целое число. Это обратная задача к той, которую мы рассматривали в предыдущей теме. Там мы искали дробь от числа, деля это число на знаменатель дроби, и полученный результат умножая на числитель дроби.

А сейчас наоборот, зная дробь и сколько это составляет от числа, найти изначальное целое число.

Например, если длины линейки составляют шесть сантиметров и нам говорят найти длину всей линейки, то мы должны понимать, что от нас требуют найти изначальное целое число (длину всей линейки) по дроби . Давайте решим эту задачу.

Требуется найти длину всей линейки по дроби . Известно, что длины всей линейки составляют 6 см.

Мы уже знаем каким образом получились эти 6 см. Имелась какая-то длина, её разделили на пять частей, поскольку знаменатель дроби это число 5. Затем было взято две части от пяти частей, поскольку числитель дроби это число 2.

Чтобы узнать длину всей линейки, сначала нужно узнать длину одной части. Как это узнать? Попробуем догадаться, внимательно изучив следующий рисунок:

Если две части длины линейки составляют 6 см, то нетрудно догадаться, что одна часть составляет 3 см. А чтобы получить эти 3 см, надо 6 разделить на 2

Итак, мы нашли длину одной части. Одна часть из пяти или длины линейки составляет 3 см. Если частей всего пять, то для нахождения длины линейки, нужно взять три сантиметра пять раз. Другими словами, умножить 3 см на число 5

Мы нашли длину линейки. Она составляет 15 сантиметров. Это можно увидеть на следующем рисунке.

Видно, что пять частей из пяти или составляют пятнадцать сантиметров.

Чтобы легче было находить число по его дроби, можно пользоваться следующим правилом:

Чтобы найти число по его дроби, нужно известное число разделить на числитель дроби, и полученный результат умножить на знаменатель дроби.

Пример 2. Число 20 это от всего числа. Найдите это число.

Знаменатель дроби показывает, что число, которое мы должны найти, разделено на пять частей. Если этого числа составляет число 20, то для нахождения всего числа, сначала нужно найти (одну часть из пяти) от всего числа. Для этого 20 надо разделить на числитель дроби

Мы нашли от всего числа. Эта часть равна 5. Чтобы найти всё число, нужно полученный результат 5 умножить на знаменатель дроби

Мы нашли от всего числа. Другими словами, нашли всё число, которое от нас требовали найти. Это число 25.

Пример 3. Десять минут это времени приготовления каши. Найдите общее время приготовления каши.

Знаменатель дроби показывает, что общее время приготовления каши разделено на три части. Если времени приготовления каши составляет десять минут, то для нахождения общего времени приготовления, нужно сначала найти времени приготовления. Для этого 10 нужно разделить на числитель дроби

10 мин : 2 = 5 мин

Мы нашли времени приготовления каши. времени приготовления каши составляют пять минут. Для нахождения общего времени приготовления, нужно 5 минут умножить на знаменатель дроби

5 мин × 3 = 15 мин

Мы нашли времени приготовления каши, то есть нашли общее время приготовления. Оно составляет 15 минут.

Пример 4. массы мешка цемента составляет 30 кг. Найти общую массу мешка.

Знаменатель дроби показывает, что общая масса мешка разделена на четыре части. Если массы мешка составляет 30 кг то для того, чтобы найти общую массу мешка нужно сначала найти массы мешка. Для этого 30 надо разделить на числитель дроби .

Мы нашли массы мешка. массы мешка составляет 15 кг. Теперь, чтобы найти общую массу мешка, надо 15кг умножить на знаменатель дроби

Мы нашли массы мешка. Другими словами, нашли общую массу мешка. Общая масса мешка цемента составляет 60 кг.

Деление меньшего числа на большее

В жизни часто возникают ситуации, когда требуется разделить меньшее число на большее. Например, представим ситуацию. Имеется трое друзей:

И требуется поровну разделить между ними два яблока. Как это сделать? Друзей трое, а яблок всего два. Мы попали в ситуацию в которой требуется разделить меньшее число на большее (два яблока на троих).

Для таких случаев предусмотрено следующее правило:

При делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе – делитель.

Давайте применим это правило. Оно говорит, что при делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе делитель. Делимое у нас это два яблока. Записываем в числителе число 2:

А делитель у нас это трое друзей (вспоминаем, что делитель показывает на сколько частей надо разделить делимое). Записываем тройку в знаменателе нашей дроби:

Забавно, но дробь это ответ к нашей задаче. Каждому другу достанется яблока. Почему так произошло?

Чтобы разделить два яблока на троих, надо разрезать ножом каждое яблоко на три части и раскидать поровну эти куски между тремя друзьями:

Как видно на рисунке, каждое яблоко было разделено на три части и раскидано поровну на троих друзей. Каждому другу досталось яблока (два кусочка из трёх).

Какую часть одно число составляет от другого

Иногда возникает необходимость узнать какую часть первое число составляет от второго. Для таких случаев предусмотрено следующее правило:

Чтобы узнать какую часть первое число составляет от второго, надо первое число разделить на второе.

Например, яблоко разделили на пять одинаковых долек. Какую часть яблока составляют две дольки?

Чтобы ответить на этот вопрос, надо первое число разделить на второе. Первое число это 2, второе — 5. Получается дробь .

Значит две дольки из пяти долек составляют две пятых. Это можно увидеть на следующем рисунке:

Итак, две дольки яблока из пяти составляют две пятых.

Возникает вопрос, а как узнать какое число первое, а какое второе? Для этого нужно посмотреть на вопрос, который поставлен в задаче. То число, которое указано в вопросе задачи, оно и будет первым числом. Например, в предыдущей задаче вопрос был поставлен так:

«Какую часть яблока составляют две такие дольки?»

Если внимательно присмотреться к вопросу, то можно обнаружить, что в нём указано число 2. Оно и стало первым числом.

Иногда в вопросе мелькает сразу два числа. Например: какую часть составляет число 2 от числа 10?

В этом случае первым числом будет то, которое в вопросе расположено раньше. В данном случае первое число это 2, а второе 10. Делим 2 на 10, получаем дробь . Значит число 2 от числа 10 составляет (две десятых).

Дробь означает, что число 10 разделено на десять частей, и от этих десяти частей взято две части.

Также, эту дробь можно сократить на 2. После сокращения дроби на 2 получаем дробь .

Дробь тоже может послужить ответом к задаче. Она будет означать, что число 10 разделено на пять частей, и от этих пяти частей взята одна часть.

Таким образом, число 2 составляет (одну пятую) от числа 10.

Пример 3. Какую часть составляет число 5 от числа 15?

Делим первое число на второе. Первое число 5, а второе 15. Делим 5 на 15, получаем дробь . Эту дробь можно сократить на 5

Получили аккуратную дробь . Значит ответ будет выглядеть следующим образом:

Число 5 составляет (одну третью) от числа 15.

Это можно даже проверить. Для этого нужно найти от числа 15. Если мы всё сделали правильно, то должны получить число 5.

Итак, найдём от числа 15. Как находить дробь от числа мы уже знаем

Получили ответ 5. Значит задача была решена правильно.

Пример 4. Какую часть 3 см составляют от 12 см?

Делим первое число на второе. Первое число это 3, а второе 12. Получаем дробь . Эту дробь можно сократить на 3

Получили ответ . Значит 3 см составляют (одну четвёртую) от 12 см.

Проверим правильно ли мы решили эту задачу. Для этого найдём от 12 см. Если мы всё сделали правильно, то должны получить 3 см.

Делим 12 на знаменатель дроби

Умножаем полученные 3 см на числитель дроби

Получили ответ 3 см. Значит задача была решена правильно.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

spacemath.xyz

Математика


СПРАВОЧНЫЙ МАТЕРИАЛ ПО МАТЕМАТИКЕ ДЛЯ 1-6 КЛАССОВ.

Уважаемые родители! Если Вы ищите репетитора по математике для Вашего ребёнка, то это объявление для Вас. Предлагаю скайп-репетиторство: подготовка к ОГЭ, ЕГЭ, ликвидация пробелов в знаниях. Ваши выгоды очевидны:

1) Ваш ребенок находится дома, и Вы можете быть за него спокойны;

2) Занятия проходят в удобное для ребенка время, и Вы даже можете присутствовать на этих занятиях. Объясняю я просто и доступно на всем привычной школьной доске.

3) Другие важные преимущества скайп-занятий додумаете сами!

Напишите мне по адресу: [email protected] или сразу добавляйтесь ко мне в скайп, и мы обо всём договоримся. Цены доступные.

P.S. Возможны занятия в группах по 2-4 учащихся.

С уважением Татьяна Яковлевна Андрющенко — автор этого сайта.

Дорогие друзья!

Я рада предложить вам скачать бесплатно справочные материалы по математике для 5 класса. Скачать здесь!

Дорогие друзья!

Не секрет, что некоторые дети испытывают трудности при умножении и делении в столбик. Чаще всего это связано с недостаточным знанием таблицы умножения. Предлагаю подучить таблицу умножения с помощью лото. Подробнее смотрите здесь. Скачать лото здесь.

Дорогие друзья! Скоро вы столкнетесь (или уже столкнулись) с необходимостью решать задачи на проценты. Такие задачи начинают решать в 5 классе и заканчивают. а вот и не заканчивают решать задачи на проценты! Эти задачи встречаются и на контрольных, и на экзаменах: как переводных, так и ОГЭ и ЕГЭ. Что же делать? Нужно учиться решать такие задачи. В этом вам поможет моя книга «Как решать задачи на проценты». Подробности здесь!

Сложение чисел.

  • a+b=c, где a и b–слагаемые, c–сумма.
  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
  • Вычитание чисел.

  • a-b=c, где a–уменьшаемое, b–вычитаемое, c-разность.
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
  • Умножение чисел.

  • a·b=c, где a и b-сомножители, c-произведение.
  • Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
  • Деление чисел.

  • a:b=c, где a-делимое, b-делитель, c-частное.
  • Чтобы найти неизвестное делимое, нужно делитель умножить на частное.
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.
  • Законы сложения.

  • a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
  • (a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).
  • Таблица сложения.

  • 1+9=10; 2+8=10; 3+7=10; 4+6=10; 5+5=10; 6+4=10; 7+3=10; 8+2=10; 9+1=10.
  • 1+19=20; 2+18=20; 3+17=20; 4+16=20; 5+15=20; 6+14=20; 7+13=20; 8+12=20; 9+11=20; 10+10=20; 11+9=20; 12+8=20; 13+7=20; 14+6=20; 15+5=20; 16+4=20; 17+3=20; 18+2=20; 19+1=20.
  • Законы умножения.

  • a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
  • (a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).
  • (a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
  • (а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).
  • Таблица умножения.

    2·1=2; 3·1=3; 4·1=4; 5·1=5; 6·1=6; 7·1=7; 8·1=8; 9·1=9.

    2·2=4; 3·2=6; 4·2=8; 5·2=10; 6·2=12; 7·2=14; 8·2=16; 9·2=18.

    2·3=6; 3·3=9; 4·3=12; 5·3=15; 6·3=18; 7·3=21; 8·3=24; 9·3=27.

    2·4=8; 3·4=12; 4·4=16; 5·4=20; 6·4=24; 7·4=28; 8·4=32; 9·4=36.

    2·5=10; 3·5=15; 4·5=20; 5·5=25; 6·5=30; 7·5=35; 8·5=40; 9·5=45.

    2·6=12; 3·6=18; 4·6=24; 5·6=30; 6·6=36; 7·6=42; 8·6=48; 9·6=54.

    2·7=14; 3·7=21; 4·7=28; 5·7=35; 6·7=42; 7·7=49; 8·7=56; 9·7=63.

    2·8=16; 3·8=24; 4·8=32; 5·8=40; 6·8=48; 7·8=56; 8·8=64; 9·8=72.

    2·9=18; 3·9=27; 4·9=36; 5·9=45; 6·9=54; 7·9=63; 8·9=72; 9·9=81.

    2·10=20; 3·10=30; 4·10=40; 5·10=50; 6·10=60; 7·10=70; 8·10=80; 9·10=90.

    Делители и кратные.

  • Делителем натурального числа а называют натуральное число, на которое а делится без остатка. (Числа 1, 2, 3, 4, 6, 8, 12, 24-делители числа 24, т. к. 24 делится на каждое из них без остатка) 1-делитель любого натурального числа. Наибольший делитель любого числа – само это число.
  • Кратным натурального числа b называют натуральное число, которое делится без остатка на b. (Числа 24, 48, 72,…-кратны числу 24, так как делятся на 24 без остатка). Наименьшее кратное любого числа — само это число.
  • Признаки делимости натуральных чисел.

  • Числа, употребляемые при счете предметов (1, 2, 3, 4,…) называют натуральными числами. Множество натуральных чисел обозначают буквой N.
  • Цифры 0, 2, 4, 6, 8 называют четными цифрами. Числа, запись которых оканчивается четными цифрами, называют четными числами.
  • Цифры 1, 3, 5, 7, 9 называют нечетными цифрами. Числа, запись которых оканчивается нечетными цифрами, называются нечетными числами.
  • Признак делимости на число 2 . Все натуральные числа, запись которых оканчивается четной цифрой, делятся на 2.
  • Признак делимости на число 5 . Все натуральные числа, запись которых оканчивается цифрой 0 или цифрой 5, делятся на 5.
  • Признак делимости на число 10 . Все натуральные числа, запись которых оканчивается цифрой 0, делятся на 10.
  • Признак делимости на число 3 . Если сумма цифр числа делится на 3, то и само число делится на 3.
  • Признак делимости на число 9 . Если сумма цифр числа делится на 9, то и само число делится на 9.
  • Признак делимости на число 4 . Если число, составленное из двух последних цифр данного числа, делится на 4, то и само данное число делится на 4.
  • Признак делимости на число 11. Если разность между суммой цифр, стоящих на нечетных местах, и суммой цифр, стоящих на четных местах, делится на 11, то и само число делится на 11.
  • Простым называют число, которое имеет только два делителя: единицу и само это число.
  • Составным называют число, которое имеет более двух делителей.
  • Число 1 не относится ни к простым числам, ни к составным числам.
  • Запись составного числа в виде произведения только простых чисел называется разложением составного числа на простые множители. Любое составное число можно единственным образом представить в виде произведения простых множителей.
  • Наибольшим общим делителем данных натуральных чисел называют наибольшее натуральное число, на которое делится каждое из этих чисел.
  • Наибольший общий делитель данных чисел равен произведению общих простых множителей в разложениях этих чисел. Пример. НОД(24, 42)=2·3=6, т. к. 24=2·2·2·3, 42=2·3·7, их общие простые множители 2 и 3.
  • Если натуральные числа имеют только один общий делитель-единицу, то эти числа называют взаимно простыми.
  • Наименьшим общим кратным данных натуральных чисел называют наименьшее натуральное число, кратное каждому из данных чисел. Пример. НОК(24, 42)=168. Это самое маленькое число, которое делится и на 24 и на 42.
  • Для нахождения НОК нескольких данных натуральных чисел надо: 1) разложить каждое из данных чисел на простые множители; 2) выписать разложение большего из чисел и умножить его на недостающие множители из разложений других чисел.
  • Наименьшее кратное двух взаимно простых чисел равно произведению этих чисел.
  • b-знаменатель дроби, показывает, на сколько равных частей разделили;

    a-числитель дроби, показывает, сколько таких частей взяли. Дробная черта означает знак деления.

    Иногда вместо горизонтальной дробной черты ставят наклонную, и обыкновенная дробь записывается так: a/b.

  • У правильной дроби числитель меньше знаменателя.
  • У неправильной дроби числитель больше знаменателя или равен знаменателю.
  • Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

    Деление и числителя и знаменателя дроби на их общий делитель, отличный от единицы, называют сокращением дроби.

  • Число, состоящее из целой части и дробной части, называется смешанным числом.
  • Чтобы неправильную дробь представить в виде смешанного числа, надо разделить числитель дроби на знаменатель, тогда неполное частное будет целой частью смешанного числа, остаток – числителем дробной части, а знаменатель останется тот же.
  • Чтобы представить смешанное число в виде неправильной дроби, нужно умножить целую часть смешанного числа на знаменатель, к полученному результату прибавить числитель дробной части и записать в числителе неправильной дроби, а знаменатель оставить тот же.
  • Луч Ох с началом отсчета в точке О, на котором указаны единичный отрезок и направление, называют координатным лучом.
  • Число, соответствующее точке координатного луча, называется координатой этой точки. Например, А(3). Читают: точка А с координатой 3.
  • Наименьшим общим знаменателем (НОЗ) данных несократимых дробей является наименьшее общее кратное (НОК) знаменателей этих дробей.
  • Чтобы привести дроби к наименьшему общему знаменателю, надо: 1) найти наименьшее общее кратное знаменателей данных дробей, оно и будет наименьшим общим знаменателем. 2) найти для каждой из дробей дополнительный множитель, для чего делить новый знаменатель на знаменатель каждой дроби. 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
  • Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, и меньше та, у которой числитель меньше.
  • Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, и меньше та, у которой знаменатель больше.
  • Чтобы сравнить дроби с разными числителями и разными знаменателями, надо привести дроби к наименьшему общему знаменателю, а затем сравнивать дроби с одинаковыми знаменателями.
  • Действия над обыкновенными дробями.

  • Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.
  • Если нужно сложить дроби с разными знаменателями, то сначала дроби приводят к наименьшему общему знаменателю, а затем складывают дроби с одинаковыми знаменателями.
  • Чтобы выполнить вычитание дробей с одинаковыми знаменателями, из числителя первой дроби вычитают числитель второй дроби, а знаменатель оставляют тот же.
  • Если нужно выполнить вычитание дробей с разными знаменателями, то их сначала приводят к общему знаменателю, а затем выполняют вычитание дробей с одинаковыми знаменателями.
  • При выполнении действий сложения или вычитания смешанных чисел эти действия выполняют отдельно для целых частей и для дробных частей, а затем результат записывают в виде смешанного числа.
  • Произведение двух обыкновенных дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей данных дробей.
  • Чтобы умножить обыкновенную дробь на натуральное число, нужно умножить числитель дроби на это число, а знаменатель оставить тот же.
  • Два числа, произведение которых равно единице, называют взаимно обратными числами.
  • При умножении смешанных чисел их сначала обращают в неправильные дроби.
  • Чтобы найти дробь от числа, нужно умножить число на эту дробь.
  • Чтобы разделить обыкновенную дробь на обыкновенную дробь, нужно делимое умножить на число, обратное делителю.
  • При делении смешанных чисел их сначала обращают в неправильные дроби.
  • Чтобы разделить обыкновенную дробь на натуральное число, нужно знаменатель дроби умножить на это натуральное число, а числитель оставить тот же. ((2/7):5=2/(7·5)=2/35).
  • Чтобы найти число по его дроби, нужно разделить на эту дробь число, ей соответствующее.
  • Десятичной дробью называют число, записанное в десятичной системе и имеющее разряды меньше единицы. (3,25; 0,1457 и т. д.)
  • Знаки, стоящие в десятичной дроби после запятой, называют десятичными знаками.
  • Десятичная дробь не изменится, если в конце десятичной дроби приписать или отбросить нули.
  • Чтобы сложить десятичные дроби, нужно: 1) уравнять в этих дробях количество десятичных знаков; 2) записать их друг под другом так, чтобы запятая была записана под запятой; 3) выполнить сложение, не обращая внимания на запятую, и поставить в сумме запятую под запятыми в слагаемых дробях.

    Чтобы выполнить вычитание десятичных дробей, нужно: 1) уравнять количество десятичных знаков в уменьшаемом и вычитаемом; 2) подписать вычитаемое под уменьшаемым так, чтобы запятая оказалась под запятой; 3) выполнить вычитание, не обращая внимания на запятую, и в полученном результате поставить запятую под запятыми уменьшаемого и вычитаемого.

  • Чтобы умножить десятичную дробь на натуральное число, нужно умножить ее на это число, не обращая внимания на запятую, и в полученном произведении отделить запятой столько цифр справа, сколько их было после запятой в данной дроби.
  • Чтобы умножить одну десятичную дробь на другую, нужно выполнить умножение , не обращая внимания на запятые, и в полученном результате отделить запятой справа столько цифр, сколько их было после запятых в обоих множителях вместе.
  • Чтобы умножить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр.
  • Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
  • Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа и поставить в частном запятую тогда, когда закончится деление целой части.
  • Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.
  • Чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.
  • Чтобы разделить десятичную дробь на 0,1; 0,01; 0,001 и т. д., нужно перенести запятую вправо на 1, 2, 3 и т. д. цифр. (Деление десятичной дроби на 0,1; 0,01; 0,001 и т. д. равносильно умножению этой десятичной дроби на 10, 100, 1000 и т.д.)
  • Чтобы округлить число до какого-либо разряда – подчеркнем цифру этого разряда, а затем все цифры, стоящие за подчеркнутой, заменяем нулями, а если они стоят после запятой – отбрасываем. Если первая замененная нулем или отброшенная цифра равна 0, 1, 2, 3 или 4, то подчеркнутую цифру оставляем без изменения. Если первая замененная нулем или отброшенная цифра равна 5, 6, 7, 8 или 9, то подчеркнутую цифру увеличиваем на 1.

    Среднее арифметическое нескольких чисел.

    Средним арифметическим нескольких чисел называют частное от деления суммы этих чисел на число слагаемых.

    Размах ряда чисел.

    Разность между наибольшим и наименьшим значениями ряда данных называется размахом ряда чисел.

    Мода ряда чисел.

    Число, встречающееся с наибольшей частотой среди данных чисел ряда, называется модой ряда чисел.

  • Процентом называется одна сотая часть. Приобрести книгу, которая учит, «Как решать задачи на проценты».
  • Чтобы выразить проценты дробью или натуральным числом, нужно число процентов разделить на 100%. (4%=0,04; 32%=0,32).
  • Чтобы выразить число в процентах, нужно его умножить на 100%. (0,65=0,65·100%=65%; 1,5=1,5·100%=150%).
  • Чтобы найти проценты от числа, нужно выразить проценты обыкновенной или десятичной дробью и умножить полученную дробь на данное число.
  • Чтобы найти число по его процентам, нужно выразить проценты обыкновенной или десятичной дробью и разделить на эту дробь данное число.
  • Чтобы найти, сколько процентов составляет первое число от второго, нужно разделить первое число на второе и результат умножить на 100%.
    • Частное двух чисел называют отношением этих чисел. a:b или a/b – отношение чисел a и b, причем, а – предыдущий член, b – последующий член.
    • Если члены данного отношения переставить местами, то получившееся отношение называют обратным для данного отношения. Отношения b/a и a/b – взаимно обратные.
    • Отношение не изменится, если оба члена отношения умножить или разделить на одно и то же число, отличное от нуля.
    • Равенство двух отношений называют пропорцией.
    • a:b=c:d. Это пропорция. Читают: а так относится к b, как c относится к d. Числа a и d называют крайними членами пропорции, а числа b и c – средними членами пропорции.
    • Произведение крайних членов пропорции равно произведению ее средних членов. Для пропорции a:b=c:d или a/b=c/d основное свойство записывается так: a·d=b·c.
    • Чтобы найти неизвестный крайний член пропорции, нужно произведение средних членов пропорции разделить на известный крайний член.
    • Чтобы найти неизвестный средний член пропорции, нужно произведение крайних членов пропорции разделить на известный средний член. Задачи на пропорцию.
    • Пусть величина y зависит от величины х. Если при увеличении х в несколько раз величина у увеличивается во столько же раз, то такие величины х и у называются прямо пропорциональными.

      Если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

      Отношение длины отрезка на карте к длине соответствующего расстояния на местности называют масштабом карты.

      Пусть величина у зависит от величины х. Если при увеличении х в несколько раз величина у уменьшается во столько же раз, то такие величины х и у называются обратно пропорциональными.

      Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

    • Множество представляет собой совокупность некоторых предметов или чисел, составленных по каким-либо общим свойствам или законам (множество букв на странице, множество правильных дробей со знаменателем 5, множество звезд на небе и т.д.).
    • Множества состоят из элементов и бывают конечными или бесконечными. Множество, которое не содержит ни одного элемента, называют пустым множеством и обозначают Ø.
    • Множество В называют подмножеством множества А, если все элементы множества В являются элементами множества А.
    • Пересечением множеств А и В называется множество, элементы которого принадлежат и множеству А и множеству В.
    • Объединением множеств А и В называется множество, элементы которого принадлежат хотя бы одному из данных множеств А и В.
    • Множества чисел.

    • N – множество натуральных чисел: 1, 2, 3, 4,…
    • Z – множество целых чисел: …, -4, -3, -2, -1, 0, 1, 2, 3, 4,…
    • Q – множество рациональных чисел, представимых в виде дроби m/n, где m – целое, n – натуральное (-2; 3/5; √9; √25 и т.д.)
    • Координатной прямой называют прямую, на которой заданы положительное направление, начало отсчета (точка О) и единичный отрезок.
    • Каждой точке на координатной прямой соответствует некоторое число, которое называют координатой этой точки. Например, А(5). Читают: точка А с координатой пять. В(-3). Читают: точка В с координатой минус три.
    • Модулем числа а (записывают |a|) называют расстояние от начала отсчета до точки, соответствующей данному числу а. Значение модуля любого числа неотрицательно. |3|=3; |-3|=3, т.к. расстояние от начала отсчета и до числа -3 и до числа 3 равно трем единичным отрезкам. |0|=0.
    • По определению модуля числа: |a|=a, если a≥0 и |a|=-a, если а b.
    • Если при сравнении чисел a и b разность a-b – отрицательное число, то a , то их называют строгими неравенствами.
    • Если неравенства записывают знаками ≤ или ≥, то их называют нестрогими неравенствами.
    • Свойства числовых неравенств.

      г) Неравенство вида x≥a. Ответ: [a; +∞).

      Двойные неравенства.

      а) Двойное неравенство вида a 0 ветви гиперболы расположены в I и III, а при k

      www.mathematics-repetition.com

      Смотрите еще:

      • Финляндия оплата штрафов Оплата финских штрафов Каждый может попасть в неприятную ситуацию, например, поехать в Финляндию на выходных и схлопотать штраф. Финские банки в выходные дни не работают, и оплата штрафа может надолго затянуться со всеми вытекающими. Как и где разобраться с этой проблемой, подскажут наши […]
      • Как получить апелляционное определение по гражданскому делу Кассационная жалоба по гражданскому делу Процедура отмены вступивших в силу решений суда начинается, когда подается кассационная жалоба по гражданскому делу. К подготовке этого документа необходимо отнестись особо тщательно для того, чтобы исключить возвращение ее или отказ в […]
      • Калькулятор военной пенсии рф Сокращение пенсионеров при сокращении штатов 2016 год ознаменовался тяжелой экономический ситуацией в стране и ухудшением общего финансового положения граждан, а соответственно и работодателей. Во времена серьезного кризиса, одним из способов сохранения предприятия прибыльным является […]
      • Минимальная пенсия в башкирии в 2018 Пенсионное обеспечение для жителей Уфы и Республики Башкортостан в 2018 году В Республике Башкортостан проживает 1 147 579 пенсионеров. Все они получают доход из бюджета Пенсионного фонда (ПФР). Правительство РФ регулирует доходы социально незащищенных групп населения с тем, чтобы не […]
      • Не вовремя назначают пенсию Назначение трудовой пенсии по старости с 2015 года Условия назначения трудовой пенсии по старости в 2015 году Как происходит назначение трудовой пенсии по старости с 2015 года?. Этот вопрос начинает волновать будущих пенсионеров за несколько лет или как минимум за год до назначения […]
      • Бессмертие на сталкер закон меченого Как увеличить максимальный переносимый вес в Сталкере Многие поклонники игры «Сталкер» сталкивались с проблемой невозможности в игровом мире переносить с собой большой вес: по умолчанию весовой предел составляет 60 килограммов, что, конечно же, маловато и доставляет кучу неудобств. Ведь […]